INITATE PROJECT

AMMONIA FROM STEEL GASES

NEXTCHEM

Gian Luca Del Fabbro Arcopinto *R&D Process Engineer*

AGENDA

01	INTRODUCTION	GENERAL INOFRMATION VISION AND ROUTE CONCEPTUAL SCHEME
02	PARTNERSHIP	PARTENERSHIP POSITION IN THE VALUE CHAIN EXETERNAL ADVISORY BOARD
03	SCHEDULING	PERT CHART GANTT CHART
04	BFG / BOFG	BFG/BOFG/COG COMPOSITION BOFG DYNAMICS
05	BROADER INDUSTRIAL SYMBIOSIS ANALYSYS	METHANOL FROM BFG/BOFG
06	COMMERCIAL IMPLEMENTATION PLANT	COMMERCIAL IMPLEMENTATION PLANT

INTRODUCTION

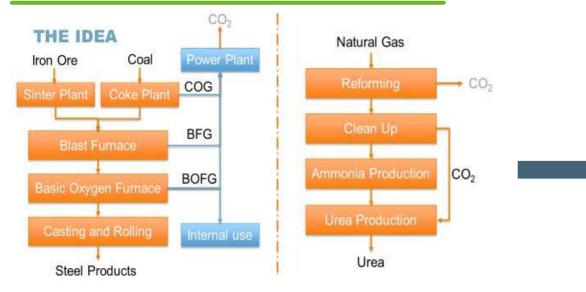
ATTENEM

GENERAL INFORMATION

Project title: "Innovative industrial transformation of the steel and chemical industries of Europe"

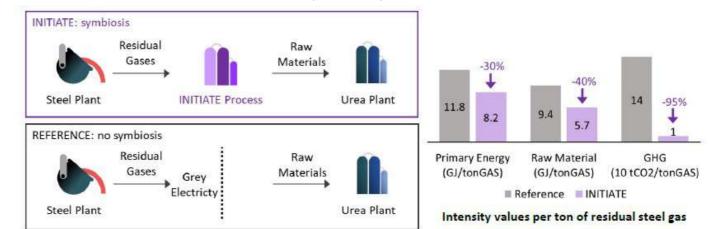
- ✓ Funding programme: EU HORIZON 2020 (H2020-LCCI-2020-EASME-singlestage / CE-SPIRE-01-2020)
- <u>Duration</u>: 54 months + 6 months of time extension (Start date: 1 November 2020 / End date: 30 October 2025)
- Keywords: Energy efficient industry, Decarbonisation, Automation and control systems
- ✓ <u>Website</u>: <u>https://www.initiate-project.eu/</u>
- LinkedIn page: <u>https://www.linkedin.com/company/initiate-project/</u>

ABSTRACT

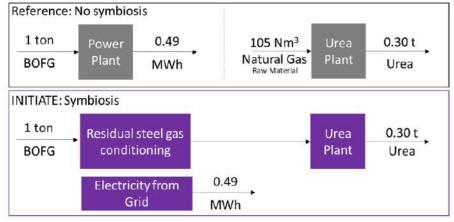

INITIATE proposes a novel symbiotic process to produce urea from steel residual gases. The project will demonstrate a reduction in primary energy intensity of 30%; carbon footprint of 95%; the raw material intensity of 40%; and waste production of 90%. Additional to this level of reduction, the concept represents a positive business case. INITIATE will demonstrate operating reliability and technology-based innovations in a real industrial setting at TRL7 by producing urea NH₃ from steel residual gases as part of three test campaigns spanning six weeks each. The reduction in primary energy intensity, carbon footprint, raw material intensity and waste production will be assessed and verified on a regional and European level by advanced dynamic modelling and Life Cycle Assessment commiserated with ISO 14404 guidelines.

The project will develop a commercial implementation roadmap for immediate deployment of INITIATE after project conclusion and for ensuring roll-out of INITIATE and similar symbiotic systems. Designing a robust and bankable first-of-a-kind commercial plant to produce urea from residual steel gases will allow implementation after project conclusion. Long term roll-out will be enabled by defining collaborative strategy for stakeholders alignment to implement INITIATE and similar symbiotic systems. Finally, effective and inclusive communication and dissemination of project results are maximized by organizing summer schools and creation of Massive Open Online Course.

INITIATE will take advantage of a consortium spanning the full value chain, including major steel and urea industrial players (Arcelor Mittal, SSAB, Stamicarbon, NextChem), functional material suppliers (Johnson Matthey, Kisuma Chemicals), multi-disciplinary researchers (TNO, POLIMI, Radboud University) and experienced promoters of CCUS, circularity and symbiosis topics to public (CO₂ Value Europe).

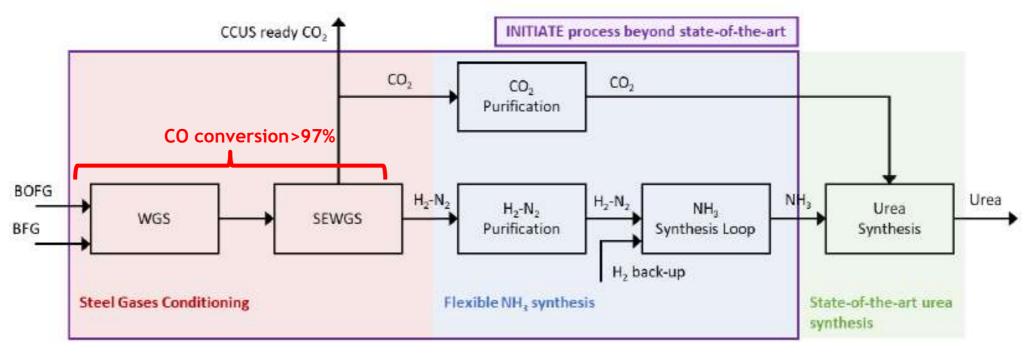

AN NEXTCHEM

INTRODUCTION


THE IDEA Carbon capture for steel plant Iron Ore Coal Power Plant sustained by Urea value chain COG Coke Plant Sinter Plant BFG SEWGS · CO, Blast Furnace BOFG Ammonia Production CO₂ Basic Oxygen Furnace Urea Production Casting and Rolling Internal use Urea Steel Products

INITIATE symbiotic production route

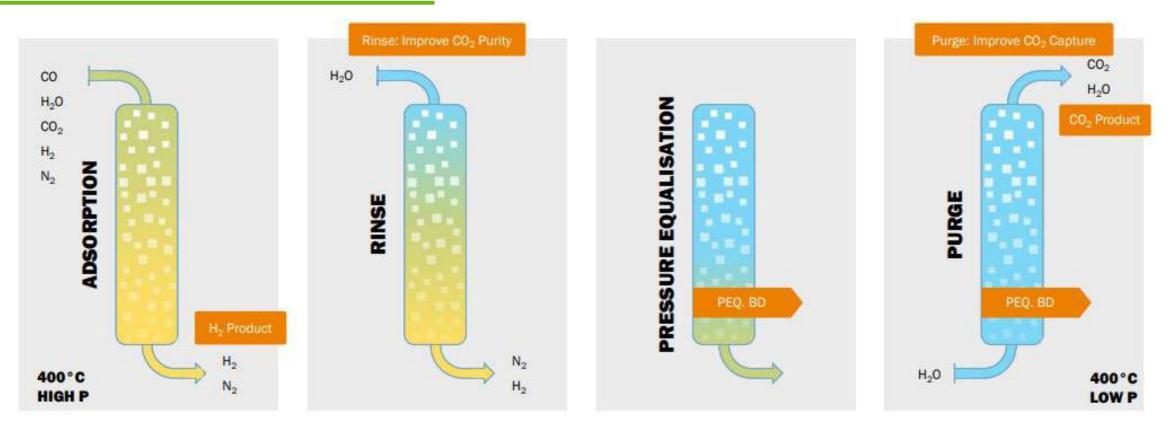
On the left, the INITIATE symbiotic system and the respective reference system. On the right, estimated impacts


Conventional Iron & Steel making and Urea Production

Reference and INITIATE system boundaries and main flows for 1 ton of BOFG (ref. unit)

INTRODUCTION

Block diagram of the INITIATE process technology for converting residual steel gases (BFG and BOFG) to urea


Legenda

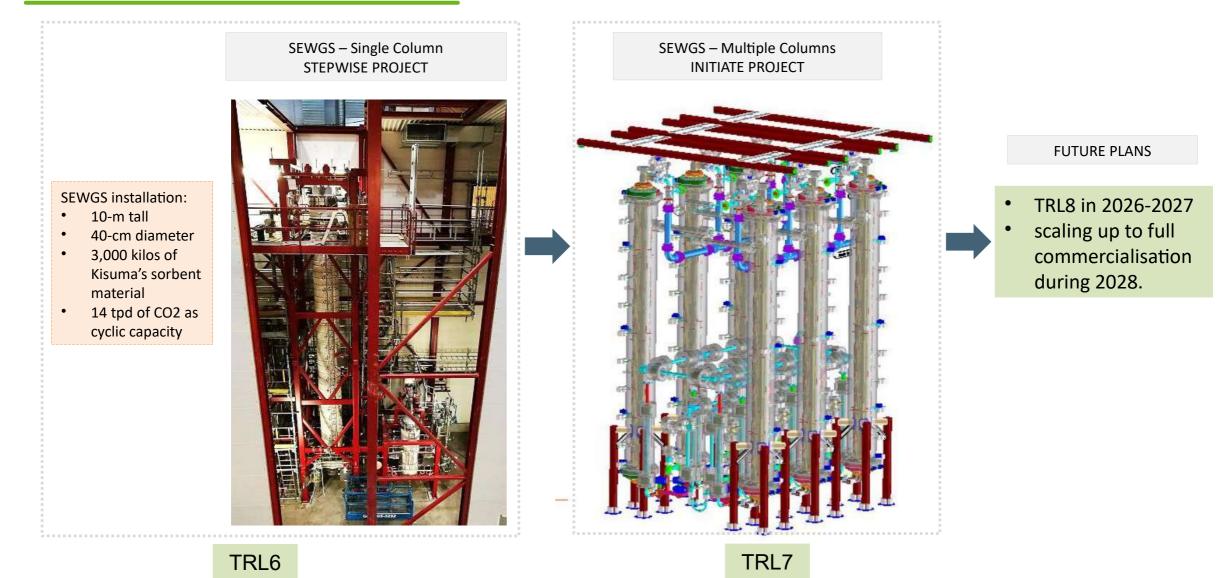
- BOFG: Basic-Oxygen-Furnace-Gas
- BFG: Blast-Furnace-Gas
- WGS: Water Gas Shift
- SEWGS: Sorption Enhanced Water Gas Shift
- CCUS: Carbon Capture, Utilization and Storage

AT NEXTCHEM

INTRODUCTION

Functional material: K-promoted Mg/Al hydrotalcite | Active for both CO₂ capture and Water Gas Shift

In 2010, Kisuma partnered the TNO-owned technology platform focused on the steel industry, refineries and power industry to develop the Sorption Enhanced Water Gas Shift (SEWGS) technology.



 $CO + H_2O \rightarrow CO_2 + H_2$

CO₂ + ads → CO₂-ads

INITIATE PROJECT – AMMONIA FROM STEEL GASES

INTRODUCTION

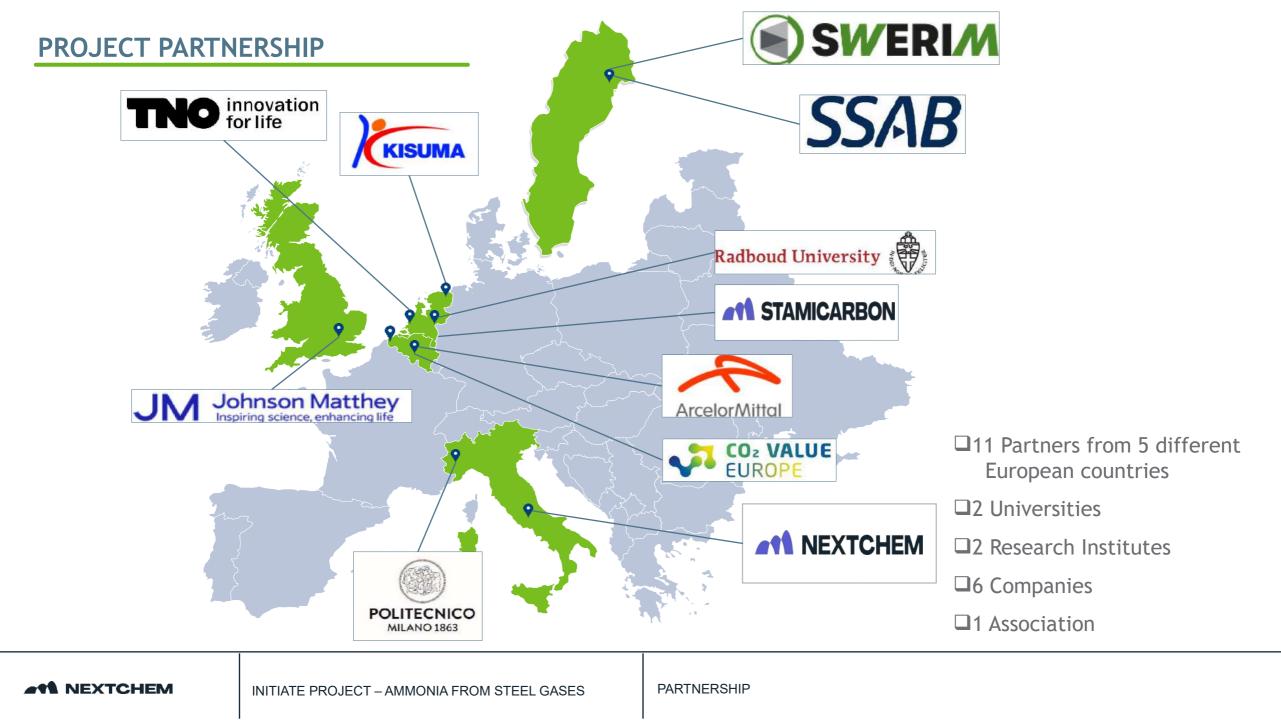
INTRODUCTION

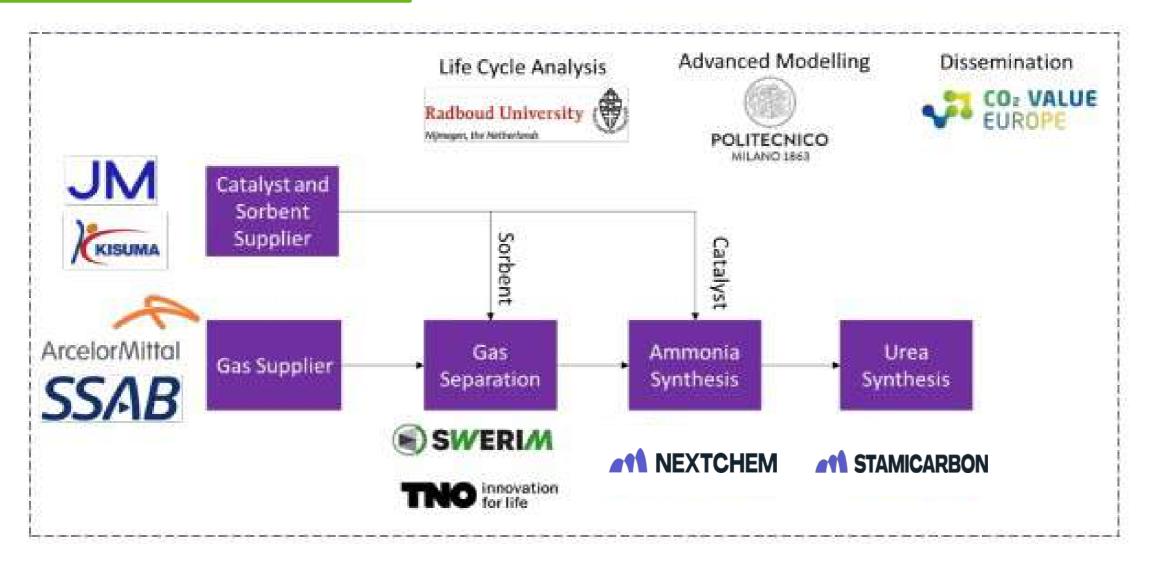
VISION AND ROUTE

VISION:

✓ Create a bankable case for the First-Of-A-Kind (FOAK) plant at the scale of 150 t_{Urea}/d (~50 kt_{Urea}/y) to be realized within a timeframe of 5 years.

ROUTE:


- ✓ The INITIATE project takes all the steps required to develop the FOAK plant:
 - Bankability requires demonstration of continuous production of Ammonia from residual steel gases at scale
 - Multiple demonstrators will be constructed and connected at a final scale of 2.88 t(NH₃)/d (equivalent to 5 t(Urea)/d).
 - The flexible conditioning of both time variable BOFG and less energy BFG will be demonstrated for the first time at such a scale with a multi-column sorption intensified reactor (carbon-capture-ratio-CCR > 96%, carbon purity-CP > 97.7%).
 - The first sub-stochiometric (up to 2.2 H_2/N_2 mol) NH₃ synthesis loop at high pressure (>250 bar) will be demonstrated.
 - **Fluctuating BOFG composition** and ambition to switch between residual steel gases as needed, require process modelling upgrading to simulate such transient operations and to dynamically optimize process controllers including advance artificial intelligence (AI) based controllers.
 - Site identification
 - Business plan development
 - IP&R, ownership, collaboration.



PARTNERSHIP

NEXTCHEM

POSITION IN THE VALUE CHAIN

PARTNERSHIP

OCI

OCI Nitrogen: nitrogen fertilizer and melamine producer; fully integrated production site in Geleen, the Netherlands.

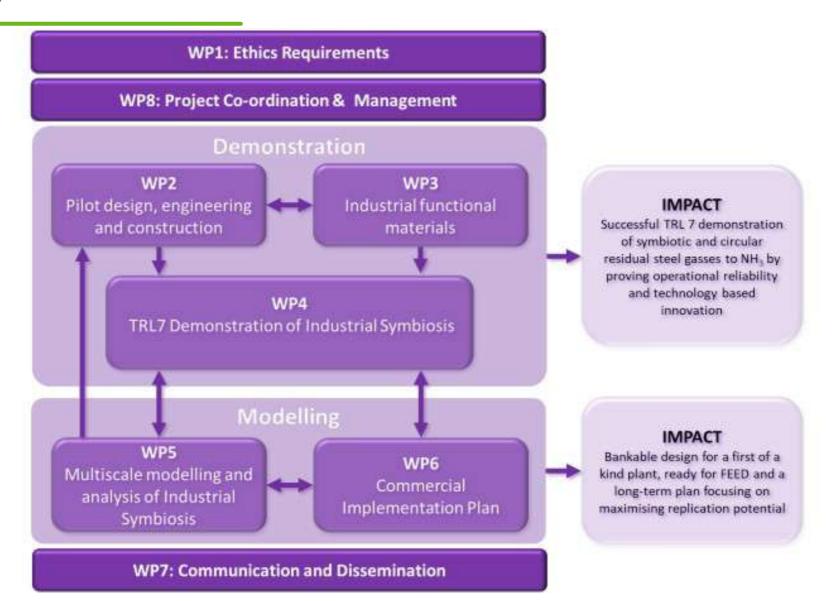
Fertiberia produces a wide range of products from fertilizers for agriculture to industrial chemicals (>520 different products). Market leader in the Iberian Peninsula (30% share in Spain, 60% in Portugal). 5.5 million tons of production of intermediate and final products in 14 sites. 1.4 million tons of CO_2 emissions.

The **World Steel Association** is a non-profit organisation with headquarters in Brussels, represents steel producers, national and regional steel industry associations, and steel research institutes. Members represent around 85% of global steel production.

The **European Steel Technology Platform** brings together all the major stakeholders in the European steel industry, including major steel manufacturers; universities and research institutions active in steel research; major users of steel such as car manufacturers; and public bodies like the European Commission and national governments.

AT NEXTCHEM

INITIATE PROJECT – AMMONIA FROM STEEL GASES


PARTNERSHIP

03

SCHEDULING

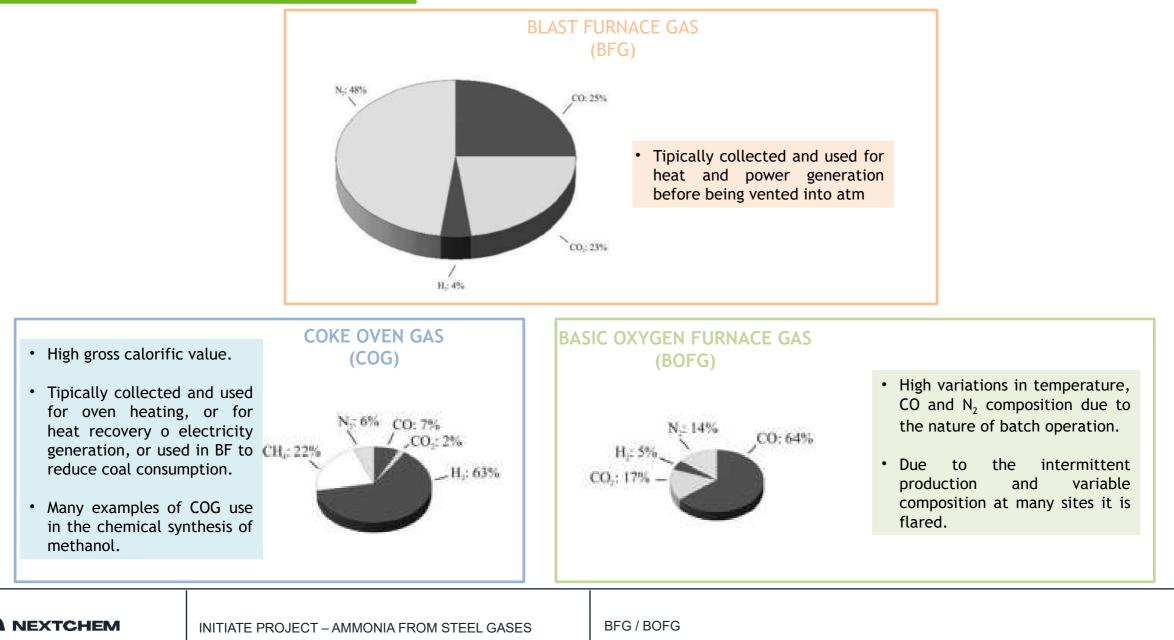
ATA NEXTCHEM

PERT CHART

SCHEDULING

GANTT CHART

		2020 2021				2022							2023					2024								2025											
		12 1	2 3	4	56	7 8	8 9 10	1111	2 1	2 3	4	56	7 8	9 1	0 11 3	12 1	2 3	4	5 6	7	8 9	10	11 12	2 1	2 3	4	5 6	5 7	8 9	10 1	1 12	1 2	3 .	4 5	6 7	8 9	1
INITIATE	Year 1					Year 2					(ear 3					Year 4							Year 5														
	1	2 3	4 5	6 6	7878	9 10 9 10	0 11 12	2 1 1	2 3 4 15	4 5	6 18 1	7 8	9 10	2 23 2	2 1	2 3	4 5	6	7 8	9 2 33	10 11 34 35	12	1 2	3	4 5 40 41	6	7 8	8 9 4 45	10 11 46 47	12 1 48 4	1 2	3 4 51 52	5 6	5 7 4 55	8 9 56 57	10 11 58 59	1 1
WP1: Ethics Requirements (TNO)	and the second second	and the second second				1000		1000	-				and in party				1000	1				121		and other		1					mmin			11	-		T
Task 1.1 H - POPD - Requirement No. 1			D11	14			1 1	1			b. R	1.1			1.1											1.1	14			1.14	1	-18			1		1
Task 1.2 EPQ - Requirement No. 2	3.4	in the second	D12																											1.12							-
WP2: Demonstrator design, engineering and construction (NC)	Se Jon o	in the second		mail			1 1							10 18						11						R. R			C Gui								
Task 2.1 Common Design Practice		171	D	1/M1					-		1	1	T I'			11										1.1	h					- (- 1)7		11		1	1
Task 2.2 Basis of Design				0	02.2 / M3	2																															
Task 2.3 Basic Engineering							MB	1	D2.	3	100			1																							
Task 2.4 Detailed Engineering														M	4	D2	4			-			_								_	_					
Task 2.5 Procurement, Construction, Transportation and Installation							1.00	1												D2.5		-															
Task 2.6 Functional Testing and Commissioning																								02.6	5/M5		_		•								
Task 2.7 Decommissioning	and a second second second						all and a	1.	1.	1 mar	L. D.	1.1		1. 1.	1.0	11.	- U -					4	. L.		1					1.5		-1.01			D2	2.7/02.8	4


First BOF campaign scheduled on 2024 CW39-CW44 (23/09 - 3/11)
Second BOF campaign: 2025 CW18-CW23 (28/4 - 08/06)

BFG / BOFG

AT NEXTCHEM

BFG/BOFG/COG COMPOSITION

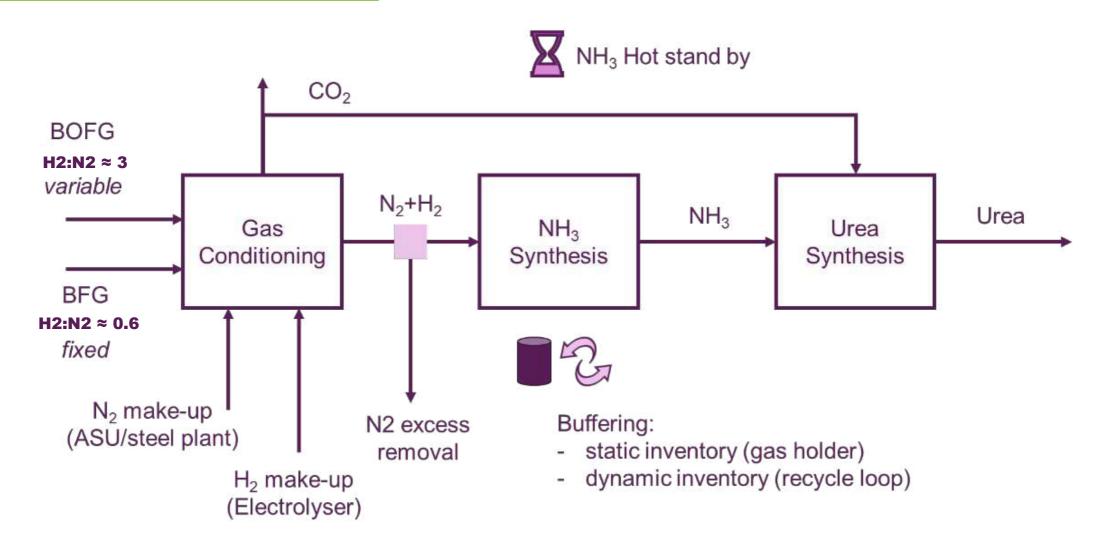
BFG/BOFG/COG COMPOSITION

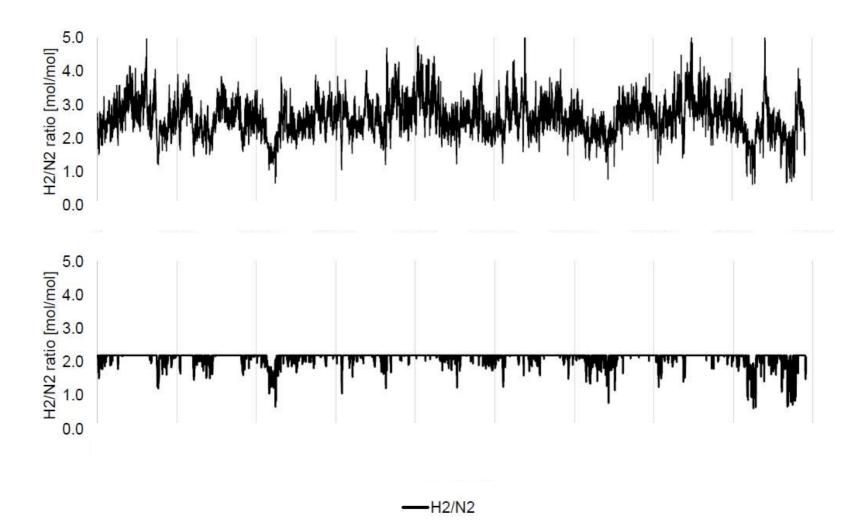
Gas Type	со	CO ₂	H_2	N ₂	CH4	H2:N2	Energy	Mode	Cleaning				
		44	mol%			-	MJ/Nm ³		-				
BOFG	65	16	3	16	0	4.3	8.6	Dynamic	No				
BFG	23	23	4	50	0	0.5	3.4	Steady	No				
COG	5	2	62	7	24	9.6	15.7	Steady	Yes				

Legenda

- BOFG: Basic-Oxygen-Furnace-Gas
- BFG: Blast-Furnace-Gas
- COG: Coke-Oven-Gas

Residual steel gases properties.


- Approximately 70% of the current steel production is obtained through the combined Blast-Furnace (BF) and Basic-Oxygen-Furnace (BOFG) route.
- More than 90% of the CO_2 emissions are the results of the three residual gases: BOFG, BFG, COG.
- Currently about 50% of these gases are used for electricity generation, while 50% is used for internal energy generation.
- $\circ~$ BOFG is the most suitable stream from $\rm NH_3$ synthesis.
- However, its size is limited and composition highly variable.
- <u>Gas holder</u> aids continuous flow of BOFG but does little to prevent composition fluctuations.
- Furthermore, BOFG is produced intermittently and there could be periods during which BOF operation is over.
- <u>BFG supply is needed</u> and <u>H₂ back-up</u> to correct the H₂/N₂ ratio ≥ 2.2.

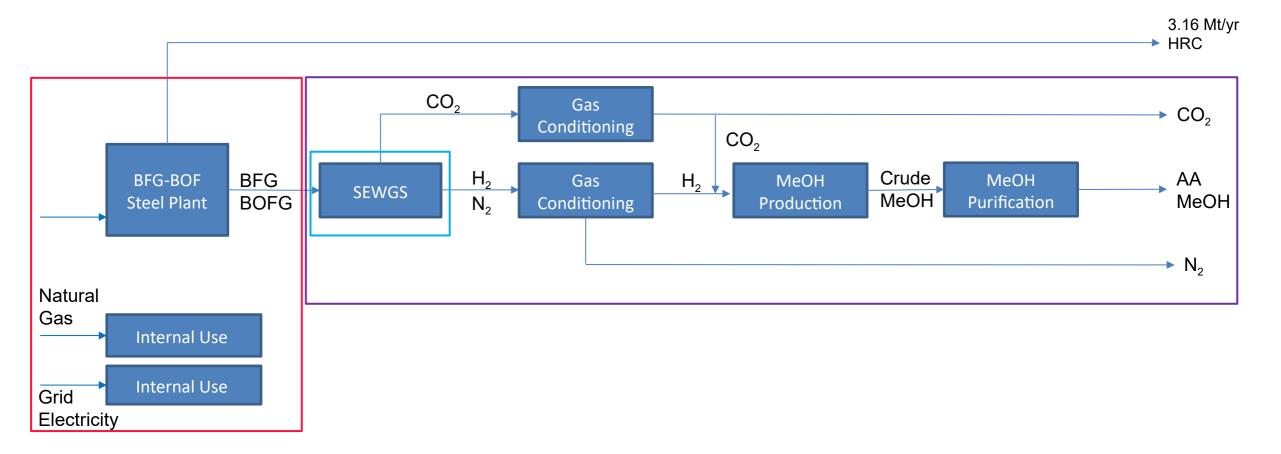


EU-based steel plant

BFG / BOFG

- ✓ Several strategies to deal with the BOFG dynamics have been identified and are under evaluation.
- ✓ Identified approaches for CO excess
 - N₂ make-up (ASU / Steel plant)
 - Use of BFG as it is rich in N₂
- \checkmark Identified approaches for N₂ excess
 - Feed gas switch to BFG
 - N₂ excess removal (e.g. via membrane)
 - H₂ make-up (Electrolyzer or H₂ buffer)
 - Static (buffer tank)
 - Dynamic buffering (recycle loop)
 - Hot standby of NH_3 production unit, switching to power production

Nitrogen make-up control philosophy


	ITIATE PROJECT – AMMONIA FROM STEEL GASES	E
--	---	---

BFG / BOFG

BROADER INDUSTRIAL SYMBIOSIS ANALYSYS

NEXTCHEM

METHANOL FROM BFG/BOF

- Production of 1740 TPD of Methanol GRADE AA, utilizing all the BOFG and BFG produced from reference steel plant (770 kNm³/h)
- Analyzed two main Key Performance Indicators (KPI's):
 - Primary Energy Consumption
 - GHG Emission Intensity
- To evaluate this two KPIs we compared the symbiotic process with the reference industrial process
- Primary Energy Consumption:
 - Reference system PEC: 27,58 GJ/ton_{HRC-BF}
 - Symbiotic system PEC: 36,45 GJ/ton_{HRC-BF}
 - Energy penalty: 8,87 GJ/ton_{HRC-BF} (32,16% relative energy penalty)
- GHG Emission Intensity:
 - Reference system emissions: 2,13 ton_{CO2}/ton_{HRC-BF}
 - Symbiotic system emissions: 1,08 ton_{CO2}/ton_{HRC-BF}
 - Carbon avoidance: -1,05 ton_{co2}/ton_{HRC-BF} (49,30% Carbon avoidance)

COMMERCIAL IMPLEMENTATION PLANT

NEXTCHEM

INITIATE COMMERCIAL IMPLEMENTATION PLANT

✓ A feasibility study will be developed within <u>April 2025</u> (including pre-FEED) for the FOAK plant based on the INITIATE technology path:

Urea solution (150 mtpd) as end product, to be used as input for liquid UAN (solution of urea and ammonium nitrate in water) fertilizers or AdBlue[®], with decarbonized ammonia as alternative, while considering the long-term implementation plan.

Potential location: Avilés (Spain), where a Fertiberia Nitric Acid /Ammonium Nitrate plant is located next to the Arcelor Mittal plant.

✓ Primary focus on available core plants of Arcelor Mittal (partner of the project) in combination with the premium urea markets for fertilizer or deratitives like AdBlue[®].

Project objectives:

- 1. UREA levelized cost reduction $\geq 15\%$
- 2. Economic feasibility with IRR \geq 15%

NEXTCHEM INITIATE PROJECT – AMMONIA FROM STEEL GASES COMMERCIAL IMPLEMENTATION PLANT

CONTACTS

NextChem S.p.A.

Sede Legale e Operativa: Via di Vannina 88/94 00156 Rome - Italy P +39 06 9356771

INITIATE PROJECT

Website: https://www.initiate-project.eu/ LinkedIn page: https://www.linkedin.com/initiate-project/ <u>g.delfabbroarcopinto@nextchem.it</u> Research & Development Financed Projects Junior Engineer

www.nextchem.it

