

-,01

organizzato in partnership da

Associazione Italiana di Ingegneria Chimica

PAUL WURTH

SMS group

SAPIENZA DIPARTIMENTO INGEGNERIA CHIMICA MATERIALI AMBIENTE

24/3/2023

degli stabilimenti siderurgici integrati

Cristiano Castagnola Paul Wurth –SMS Group

Steelmaking 1980 to 2050

production in million tons per year

World Steel Association; World Steel in Figures and own analysis

total 2,749 mio t/a

Why Primary steel is so important ? Scrap Quality and Quantity Challenge

Level of residuals found in scrap types (% Cu + Cr + Ni + Mo + Sn)

Forecast of scrap availability

WHY BF COVERS THE MAJORITY OF STEEL PRODUCTION?

SMS 🎯 group

- + High **production per unit** (up to 4,5 Mio tpy)
- + Solid fuels allows independence from energy grids associated with fluctuating prices and availability issues
- + Very flexible with respect to input Iron ore features:

It can process efficiently lower quality materials (Fe<65%) and fines (with upstream **on site agglomeration**) which are the largest portion of the mined and sea traded iron ores

Iron ore production from mines in 2018 vs. Fe % content

Global CO, pricing: different approaches affecting mainly BF based steelmaking

Why carbon is used in steel production? How can it be replaced?

- > **Removal of chemically bounded oxygen** from iron oxides
- > Generation of high **temperature thermal energy**
- > Alloy element : Steel is a solution of C in Fe up to 0,1%
- > Melting process constraints

[Green hydrogen]

[Green electricity]

[Circular carbon or Sustainable bio-carbon]

[Circular carbon or Sustainable bio-carbon]

For primary steel making, Hydrogen is a chemical reagent, not an energy carrier!

Steel industry without green electrification means de-industrialization !

Circular carbon is needed for the carbon anyhow present in steelmaking

Direct reduction application to primary steelmaking

Open Bath Furnace vs Electric Arc Furnace as DRI smelters

Major distinguishing features

open to atmosphere \rightarrow oxidizing environment smaller bath surface area \rightarrow higher power density

- > short term vessel and lining philosophy
- concentrated batch feed of materials
- > typically graphite electrodes and electrode arms

OBF

- process sealed from surrounding atmosphere \rightarrow reducing environment
- > large bath surface area \rightarrow lower power density
- Iong term vessel and lining philosophy
- > distributed and continuous material feed
- suspended Söderberg electrode
- > continuous "power on"
- simpler secondary power correction
- lower operating resistance

batch

production

oxidizing

environment

tapping steel

H2 Green Steel The world's first 100% hydrogen-based integrated steel plant

- > CO_2 emission reduction up to 95%
- > Based near **Boden**, Northern Sweden
- > Start-up of first plant: **2025**
- Capacity of phase 1: 2.5 million t/year, phase 2: 5 million t/year
- Direct Reduction plant H2 based supplied by Midrex and Paul Wurth
- SMS group supply from melt shop to finishing lines

H2GS project: highlight on OpEx (internal SMS group evaluation)

Coking coal	€/t	330
BF pellets	€/t	160
DR pellets	€/t	192
Natural Gas	€/MWh	44
Electrical Energy	€/MWh	30
Hydrogen	€/GJ- [€/kg]	23 [2,8]
Sinter Feed	€/t	110
Sized Ore	€/t	150
Fluxes, additivies	€/t	25
Scraps	€/t	550
Workforce	€/h	30
CO2 price	€/t	100

		The second se	
and Aut	Main Operating data		H2DRP-EAF
	Natural Gas	GJ/tls	2,3
	Hydrogen	GJ/tls	5,7
	Electrical power	kWh/tls	1313
	DR grade pellets	t/tls	1,41
	EAF Carbon	t/tls	0,01
a da n	Scrap	t/tls	0,16
	CO2 emissions	t/tls	0,160
	CO2 free-allocation as per ETS 2025	t/tls	0,138

Pure OpEx considered – no CapEx amortization tLS= ton of Liquid Steel

ThyssenKrupp Steel Europe Walsum (Germany) Green Hot Metal project

- > Annual saving of over 3.5 million metric tons of CO₂
- > Project CAPEX : >2 billion €
- > Location: Duisburg / Germany
- > First green Hot Metal: Q4/2026
- SMS group covers the complete process chain from barges and train unloading until hot iron discharging into torpedo car and until slag sand heap
- > Plant designed for up to 100 % H₂ use

Paving the way for CO₂-free iron and steel production

TKSe – DRP OBF (internal SMS group	highlight evaluatio	t on Op n)	Ex		Reference BF-BOF 900,0	LV coking coal BF pellets premium	€/t €/t	330 160
					800,0	Natural Cas		192
					700,0		€/IVIVVII	44
					600,0			109
					500,0	Hydrogen (remotely produced) €/GJ [€/Kg]	39 [4,7]
					400,0	Sinter Feed	€/t	110
					Ö 300,0	Sized Ore	€/t	150
	-			all	200,0	Fluxes, additivies	€/t	25
					100,0	Scraps	€/t	550
			Con la	1	0,0 Std BF-BOF	Workforce	€/h	30
Main Operating data		Ref. BF-BOF	DRP-OBF-	H2 DRP –	- Art	CO2 price	€/t	100
			BOF	OBF - BOF	NG DRP OBF BOF	H2 DRP OBF BOF		
Coal	t/tls	0,630	0	0	900,0	900,0	■ CO1)
Natural Gas	GJ/tls	0,1	10,1	2	800,0	800,0		-
Hydrogen	GJ/tls	0	0	8,4	700,0	700,0	■ Wo nan	rk & Mainte- Ice
Electrical power	kWh/tls	-90 (export)	830	840	600,0	600,0	- Paul	u matorials
Sinter feed	t/tls	1,06	0	0	0,007 (trS)	0,007 // LIS		v materials
Sized Ore	t/ls	0,19	0	0	<u>ب</u> ۲۰۰۲ 400,0 – ۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲۰۰۲ ۲	⊕ ≚ 400,0	Elec	tricity
BF grade pellets	t/tls	0,25	1,39	1,39	[∂] 300,0	Ö 300,0	——— 🗖 Нус	Irogen
Carbon	t/tls	0	0,03	0,045	200,0	200,0	■ NG	
Scrap	t/tls	0,16	0,16	0,16	100,0	100,0		1
CO2 emissions	t/tls	1,931	0,645	0,256	0,0 O h			11
CO2 free-allocation as per ETS 2027	t/tls	1,444	0,611	0,26	DRP-OBF-BOF	THE REAL PLANE		
						R.		

Pure OpEx considered – no CapEx amortization tLS= ton of Liquid Steel

Why CO₂ emissions from DRP+EAF are lower than Conventional BF + BOF ?

- Circular CARBON concept applied through gas reforming
- All CARBON entering the system exits as CO₂
- External electrical power <u>needed</u> for DRI & smelting

- No circular carbon concept applied
- 40% of the CARBON entering the system is exported as CO
- Iron Ore smelting done through thermal energy
- Credit gas energy [≈ 4 GJ/tLS] used mainly for electricity production

SMS group

PAUL WURTH

Transformation of Blast Furnace Ironmaking

Syngas generated through circular carbon reduces the CO, footprint

Patent pending

Blue Blast Furnace

Main feature: Hot syngas shaft injection

- > Enabler for higher top gas temperature
- Allows higher amounts of auxiliary fuel injection at tuyere level (e.g. COG, NG, H₂, syngas)
- > Efficient H₂ utilization

Main characteristics:

- > CO2 emission reduction up to 33% (scope 1)
- Productivity increase due to decreased gas generation at bosh level

Transformation of Blast Furnace based Steelmaking

The next logical step: circular carbon and electrification

EASyMelt[™] Electrically Assisted Syngas Smelter

> Novel technology exploiting existing BF infrastructure

- Gas from reactor will be recycled and valorised through reforming for syngas production with NG and/or COG and/or H₂
- > Hot Syngas injected at lower shaft and tuyere level
- Tuyere level syngas superheated to 1750-2200°C
 by plasma torch
- > External reformers easy, flexible start-up (NG/H₂)
- > Minimum CAPEX to transform existing Blast Furnace plants (not anymore STRANDED ASSETS!)

-65% CO₂ emissions vs. standard Blast Furnace without Carbon capture

External reformers new technology (Regenerative heat exchangers)

> Successful pilot plant testing using BFG and COG

Dry reforming without catalyst $CO_2 + CH_4 \rightarrow 2 CO + 2 H_2$

BFG: Blast Furnace gas COG: Coke oven gas

> high conversion X_{CH4} > 98%

> high syngas quality obtained

	Input	Output
CH ₄	10%	0.2%
CO ₂	7.3%	0.5%
H ₂	29%	42%
СО	19%	30%
N ₂	29%	27%
H ₂ O	5%	1%
	3.9	48

EASyMelt[™] 180 kg coke rate without H₂

CO₂ emissions [kg/t LS]

	scope 1	scope 2	11
coke	54	2	1:
BF	850	95	1(
BOF + sec. met.	8	18	1
overall	912	116	

OECD EU-28, emission factor of 300kg/MWh (target 2030)

Only 43 kg or 5% higher emissions than **NG-DRI/OBF** route

PAUL WURTH

SMS group

NG= Natural gas t HM= ton of Hot Metal t LS= ton of Liquid Steel

EASyMelt[™] 100 kg coke rate with H₂

Scope 1

>

CO₂ emissions [kg/t LS]

	scope 1	scope 2	15
coke	30	1	
BF	475	193	10
BOF + sec. met.	7	5	5
overall	512	199	

OECD EU-28, emission factor of 80kg/MWh (target 2050)

Soo Sinter 100ck DRI-OBF BF EASyMelt™ Only 47 kg or 2,5% less reduction in CO₂ compared to H2-DRI/OBF route

PAUL WURTH

SMS group

 $\bullet - \bullet$

 $-U_{2}$

711 kg/t LS

-61%

NG= Natural gas t HM= ton of Hot Metal t LS= ton of Liquid Steel

EASyMelt[™] : Comparison of specific CO₂ emissions (kg/t LS)

> EASyMelt[™] has a very similar CO₂ reduction to DRI-OBF in both scenarios!

EASyMelt™ : Variable costs (2.5 million t_LS/yr production)

Prices used for cost calculation

CO2 emission electricity*	kg/MWh	300 / 80
Coking coal	\$/t	300
Electricity	€/MWh €/GJ	100 28
Hydrogen	€/GJ [€/kg]	50 [4,7]
Natural gas	€/GJ [€/MWh]	12 [44]
BF pellets premium	\$/t	75
DR pellets premium	\$/t	100
Scrap	€/t	450
CO2 cost	€/t	150

The EASyMelt™ has the lowest OPEX

SMS group

EASyMelt^{\mathbf{M}} : CO₂ abatement cost efficiency

Cost used for OPEX calculation

CO2 emission electricity*	kg/MWh	300 / 80
Coking coal	\$/t	300
Electricity	€/MWh €/GJ	100 28
Hydrogen	€/GJ [€/kg]	50 [4,7]
Natural gas	€/GJ [€/MWh]	12 [44]
BF pellets premium	\$/t	75
DR pellets premium	\$/t	100
Scrap	€/t	450
CO2 cost	€/t	150

> By far lowest CO₂ abatement cost

> Overall best financial option!

24

OpEx – Overall comparison considering site specific costs and different technologies

EASY Net H2

EASYMEIT

OBT-BOT

Decarbonisation of primary steel: Main Takeaways

Specific geographical constraints

Raw materials availability

Cristiano Castagnola

Head of Competence Center Iron Green Steel Task Force Metallurgy

+39 347 5267066 Cristiano.castagnola@sms-group.com Paul Wurth Italia SpA- Genova-Italy

Let us stay #connected!

www.sms-group.com #turningmetalsgreen

The information provided in this presentation contains a general description of the products concerned. The actual products may not always have these characteristics as described and, in particular, these may change as a result of further development of the product. The provision of this information is not intended to have and will not have legal effect.

© SMS group GmbH / All rights reserved.